Счетчики
Идея Теллера-Улама использует тот факт, что при обычном атомном взрыве 80% энергии выделяется в виде мягких рентгеновских лучей, а не в виде осколков деления. Естественно, рентгеновские лучи намного опережают расширяющиеся (со скоростью около 1000 км/с) остатки плутония. Это позволяет использовать их для сжатия и поджога отдельной емкости с термоядерным горючим (второй ступени), путем обжатия излучением, до того, как расширяющийся первичный заряд разрушит ее.
В материале все это воплощается следующим образом. Компоненты бомбы помещаются в цилиндрический корпус с пусковым атомным зарядом ("триггером") на одном конце. Термоядерное топливо в виде цилиндра или эллипсоида помещается в корпус-толкатель - слой очень плотного материала - урана/вольфрама. Внутри цилиндра аксиально помещен стержень из Pu-239 или U-235, 2-3 см в диаметре. Все оставшееся пространство корпуса заполняется пластмассой. Триггер от цилиндра с горючим отделен защитной крышкой из урана или вольфрама.
После взрыва пускового заряда рентгеновские лучи, испускаемые из области реакции деления, распространяются по пластмассовому наполнителю. Основные составляющие пластмассы - атомы углерода и водорода, которые полностью ионизируются и становятся совершенно прозрачными для рентгена. Урановый экран между триггером и капсулой с горючим, а так же сам корпус капсулы предотвращают преждевременный нагрев дейтерида лития. Тепловое равновесие устанавливается чрезвычайно быстро, так что температура и плотность энергии сохраняются постоянными на всем пути распространения излучения. Когда урановый корпус бомбы нагревается, то начинает расширяться и охлаждаться путем уноса массы (абляции). Явление уноса, подобно огненной струи ракетного двигателя направленного внутрь капсулы, развивает огромное давление на термоядерное горючие, вызывая прогрессирующее его обжатие. Установившееся тепловое равновесие обеспечивает равномерность распределения давления со всех сторон.
Примечание. Безусловно, что после срабатывания первичного заряда "корпус" капсулы (да и вообще всё устройство) представляет собой многократно ионизированную плазму, именно так это и надо понимать в дальнейшем.
Прозрачная углеродно-водородная плазма тормозит раннее расширение плазм корпусов капсулы и всей бомбы, сохраняя канал для распространения рентгеновского излучения от перекрытия его тяжелыми атомами корпусов.
Сила, сжимающая и ускоряющая термоядерное горючие, развивается исключительно благодаря абляции. Два остальных возможных источника давления - давление плазмы (давление, развиваемое тепловым движением плазмы между корпусами) и давление рентгеновских фотонов - не оказывают непосредственного влияния на обжатие.
Оказываемое на капсулу (состоящую из уранового корпуса, горючего и стержня из делящегося материала) давление приводит к цилиндрической (либо сферической) имплозии, уменьшая ее диаметр примерно в 30 (10) раз. Плотность материала капсулы возрастает в 1000 раз. Это большее сжатие, чем производимое взрывчатой оболочкой триггера на его плутониевое ядро, поскольку энергия, достаточная для уничтожения небольшого города, тратится на сжатие нескольких килограммов топлива. Но этого еще недостаточно.
Вместе с тем маловероятно, что стержень внутри капсулы подвергается такому экстремальному сжатию. Находящийся в центре, он воспринимает очень сильное ударное воздействие и разогревается до высокой температуры, при этом сжимаясь в ~4 раза. Однако этого хватает для приведения его в надкритическое состояние. Быстрые нейтроны, в избытке имеющиеся при делении триггера, замедляются дейтеридом лития до тепловых скоростей и начинают цепную реакцию в стержне так скоро, как быстро он переходит в сверхкритическое состояние. Его взрыв, действующий наподобие "запальной свечи", вызывает еще большее увеличивает давления и температуры в центре капсулы, делая их достаточными для разжигания термоядерной реакции. Далее, самоподдерживающаяся реакция горения двигается к внешним областям капсулы с топливом. Корпус капсулы мешает выходу теплового излучения за ее пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции многократно превышают образующиеся при цепном делении (до 300 миллионов °K). С ростом температуры растет и скорость прохождения реакций.
Все это происходит примерно в полтора миллиарда раза быстрее, чем заняло это описание - всего за несколько сотен наносекунд.
Для срабатывания этой схемы крайне важны условия симметрии заряда и точного соблюдения условий эффективной лучевой имплозии. Так, например, неудача эксперимента Koon, в ходе операции Castle, произошла из-за ошибки в проекте устройства. Нейтронный поток от пускового заряда достиг второй ступени, предразогрев ее, и таким образом, помешав ее эффективному обжатию. Остальные изделия, испытанные в Castle, содержали бор-10, служащий хорошим поглотителем нейтронов и снижающим этот эффект предварительного разогрева термоядерного топлива.
Двухступенчатая схема Теллера-Улама позволяет создавать столь мощные заряды, на сколько хватит мощности триггера для сверхбыстрого обжатия большого количества горючего. Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей. Вообще, на каждой стадии в таких устройствах возможно усиление мощности в 10-100 раз.
Антон Волков
На основе материалов